US009152560B2

a2z United States Patent (10) Patent No.: US 9,152,560 B2
Hwang et al. 45) Date of Patent: Oct. 6, 2015
(54) DATA MANAGEMENT METHOD FOR USPC e, 711/103, 202, 203, 206

NONVOLATILE MEMORY

(75) Inventors: Joo-Young Hwang, Suwon-si (KR);
Chul Lee, Hwaseong-si (KR)

(73) Assignee: Samsung Electronics Co., Ltd.,

Suwon-si, Gyeonggi-do (KR)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 495 days.

(21) Appl. No.: 13/556,243

(22) Filed: Jul. 24,2012

(65) Prior Publication Data
US 2013/0080686 Al Mar. 28, 2013

(30) Foreign Application Priority Data

Sep. 23,2011 (KR) .ooeoeivicieienee 10-2011-0096370

(51) Imt.ClL
GO6F 12/10
GO6F 12/02

(52) US.CL
CPC GO6F 12/0292 (2013.01); GOG6F 12/10

(2013.01); GO6F 2212/205 (2013.01)

(58) Field of Classification Search

CPC GOG6F 12/0223; GO6F 12/0238; GO6F
12/0246; GOGF 12/0253; GOGF 12/0284;
GOG6F 12/0292; GO6F 12/10; GO6F 2212/205

(2006.01)
(2006.01)

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
6,282,605 Bl *

7,509,474 B2 *
2010/0106895 Al

8/2001 MOOTI€E ...ovvevvevrvienrninin, 711/103
3/2009 WONE ...oovvvvvvvennicinines 711/206
4/2010 Condit et al.

FOREIGN PATENT DOCUMENTS

KR 1020060085899 A 7/2006
KR 1020090042077 A 4/2009
KR 1020090066071 A 6/2009

* cited by examiner

Primary Examiner — Jared Rutz
Assistant Examiner — Mehdi Namazi
(74) Attorney, Agent, or Firm — Volentine & Whitt, PLLC

(57) ABSTRACT

A method of managing data in a system including a nonvola-
tile memory includes storing a root object of application data,
and at least one sub object referenced by the root object in the
nonvolatile memory, and mapping virtual addresses of the
root object and sub object to physical addresses of the non-
volatile memory respectively, in a page unit. The root object
stored in the nonvolatile memory includes a pointer that ref-
erences the sub object stored in the nonvolatile memory.

17 Claims, 9 Drawing Sheets

FIRST APPLICATION NVRAM SECOND APPLICATION
VAS1 PAS VAS2

VAS for Mapping Mapping VAS for

Objecl A Objecl A
Objec: A
Object B

VAS for 4 VAS for

Object B Object B

U.S. Patent Oct. 6, 2015 Sheet 1 of 9 US 9,152,560 B2

FIG. 1

RECEIVE APPLICATION DATA — 10

WHEN STORING ROOT OBJECT AND
SUB-OBJECT OF APPLICATION DATA IN
NVRAM, INCLUDE PQOINTER FOR
REFERENCING SUB-OBJECT STORED —100
IN NVRAM WITH ROOT OBJECT
STORED IN NVRAM

U.S. Patent Oct. 6, 2015 Sheet 2 of 9 US 9,152,560 B2

FIG. 2
NVRAM
R ADTA
(a) RE ;
A B

o } ADTA

U.S. Patent

FIG. 3

Oct. 6, 2015

CPU

Sheet 3 of 9

US 9,152,560 B2

; SYS

Ul

NVRAM

CPU

PS

; SYS

ul

NVRAM

DRAM

CPU

PS

; SYS

ul

NVRAM

CPU

HDD

PS

; SYS

Ul

NVRAM

DRAM

HDD

N

B

U

S
NS
N

B

U

S
N
VN

B

U

S
NS
N

B

U

S
NS

PS

U.S. Patent Oct. 6, 2015 Sheet 4 of 9 US 9,152,560 B2
PROCT(NM1) PROC2(NM2)
‘ ODP1 ‘ ODP2
VR VR?
pte_Inf1 pte_Inf2
ADTA ADTA2
R1 R2

VA1 —‘

VA2

PAGE=1

PAGE=2

Al

A2

U.S. Patent

PAGE=0
PAGE=T

PAGE=2

Oct. 6, 2015 Sheet 5 of 9 US 9,152,560 B2
PTAB
ote0 | VAR PA_R PERM
otel | VAA PA_A PERM
te2 | VAB PA_B PERM
VAS PAS

R A PAGE=1

A

B R PAGE=0

B PAGE=2

U.S. Patent Oct. 6, 2015 Sheet 6 of 9 US 9,152,560 B2
FIG. 7
VAS
PAGE=0
PAGE=1 A/////
PAGE=2 /;)%/E____
FIG. 8
PTAB
oled | VAR PA_R PERM
ptel
pte2
pte3 | VAA PA_A PERM
ote4 | VAB PA_B PERM
FIG. 9
VAS PAS
PAGE=0 R A PAGE=1
PAGE=1
PAGE=2 R PAGE=0
PAGE=3 A
PAGE=4 B B PAGE=2

U.S. Patent Oct. 6, 2015 Sheet 7 of 9 US 9,152,560 B2

FIG. 10 g o

R
A B
C D
PTAB
ote0 | VAR PA_R PERM
otel | VAA PA_A PERM
ote2 | VAB PA B PERM
ote3 | VAC PA_C PERM
oted | VAD PAD PERM
VAS
PAGE=0 R
PAGE=1 A
PAGE=2 B
PAGE=3 C
PAGE=4 D

U.S. Patent Oct. 6, 2015 Sheet 8 of 9 US 9,152,560 B2

FIG. 13
VAS
PAGE=0 R
PAGE=1
PAGE=2
PAGE=3 A
PAGE=4 B
PAGE=5 C
PAGE=6 D
FIG. 14
VAS
PAGE=0 R
PAGE=1
PAGE=2
PAGE=3 C
PAGE=4 D
PAGE=5 A
PAGE=6 B

US 9,152,560 B2

SECOND APPLICATION

VAS2

VAS for
Objecl A

U.S. Patent Oct. 6, 2015 Sheet 9 of 9
PTAB
pte0 VA_R PA_R PERM NULL
pted VA_A PA_A PERM VA R
pte2 VA_B PA_B PERM VA_R
pte3 VA_C PA_C PERM VA_A
pted VA_D PA_D PERM VA_A
FIRST APPLICATION NVRAM
PAS
VAS for Mapping Mapping
Objecl A
Object A
Object B
VAS for
Object B

VAS for
Object B

US 9,152,560 B2

1
DATA MANAGEMENT METHOD FOR
NONVOLATILE MEMORY

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119 to
Korean Patent Application No. 10-2011-0096370 filed on
Sep. 23,2011, the subject matter of which is hereby incorpo-
rated by reference.

BACKGROUND OF THE INVENTION

The inventive concept relates generally to electronic data
storage technologies. More particularly, the inventive con-
cept relates to methods of managing data in a system com-
prising a nonvolatile memory.

Computing systems typically include multiple different
types of memory for providing different levels of data stor-
age. For example, most computing systems comprise a long-
term memory designed to provide long-term data storage, and
a working memory (or main memory) designed to tempo-
rarily store data used to perform current operations. The long-
term memory typically comprises some form of nonvolatile
memory, such as a hard disk drive (HDD), a solid state drive
(SSD), or a flash memory, for example. The temporary
memory typically comprises a volatile memory such as a
dynamic random access memory (DRAM) or a static random
access memory (SRAM).

In a typical computing system, the long-term memory
stores operating system (OS) and application code to be
loaded to the main memory during execution. It also may
store various forms of user data. The main memory, on the
other hand, stores OS and application code during execution,
as well as data generated or used by the OS and application
code during execution. The main memory may also tempo-
rarily store user data or other types of data to be manipulated
by or used by the OS or executing applications.

Data may be stored in the long-term memory or the main
memory using different types of data structures. For example,
one type of memory may store data in a tree structure, while
another type of memory may store data in a linear structure.
The use of different data structures may require conversion to
be performed when data, such as application data, is trans-
ferred from one memory to another. In addition, the use of
different data structures or other features may also require
each of the different memories to be controlled by a different
OS. These and other complications can potentially reduce
system performance.

SUMMARY OF THE INVENTION

In one embodiment of the inventive concept, a method
manages data in a system comprising a nonvolatile memory.
The method comprises storing a root object of application
data, and at least one sub object referenced by the root object
in the nonvolatile memory, and mapping virtual addresses of
the root object and sub object to physical addresses of the
nonvolatile memory respectively, in a page unit. The root
object stored in the nonvolatile memory comprises a pointer
that references the sub object stored in the nonvolatile
memory.

In another embodiment of the inventive concept, a method
manages data in a system comprising a nonvolatile memory.
The method comprises receiving application data comprising
a root object, and at least one sub object that is referenced by
the root object, and storing the root object and the sub object

10

15

20

25

30

35

40

45

50

55

60

65

2

of the application data in the nonvolatile memory. The root
object stored in the nonvolatile memory includes a pointer for
referencing the sub object stored in the nonvolatile memory.

In another embodiment of the inventive concept, a system
comprises a processor configured to execute an application
using application data, and a nonvolatile memory configured
to store a root object of application data, and at least one sub
object referenced by the root object, wherein the root object
stored in the nonvolatile memory comprises a pointer that
references the sub object stored in the nonvolatile memory.
The processor maps virtual addresses of the root object and
sub object to physical addresses of the nonvolatile memory
respectively, in a page unit.

These and other embodiments of the inventive concept can
potentially improve performance, space usage, and data
access regulation in nonvolatile memory devices.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate selected embodiments of the inven-
tive concept. In the drawings, like reference numbers indicate
like features.

FIG. 1 is a flowchart illustrating a data management
method according to an embodiment of the inventive concept.

FIGS. 2A and 2B are diagrams illustrating different ways
of storing application data in a system using the data man-
agement method of FIG. 1.

FIGS. 3A through 3D are diagrams illustrating examples of
a system employing the data management method of FIG. 1.

FIG. 4 is a diagram illustrating a method of assigning a
page of objects in application data within the data manage-
ment method of FIG. 1.

FIG. 5 is a diagram illustrating an example of a page
mapping table PTAB representing mapping relationships
between virtual addresses and physical addresses of applica-
tion data according to the embodiment of the inventive con-
cept.

FIG. 6 is a diagram illustrating mapping relationships
defined by the page mapping table shown in FIG. 5.

FIG. 7 is a diagram illustrating an example of a page
conflict in the data management method of FIG. 1.

FIGS. 8 and 9 are diagrams illustrating an example of a
remapping method for handling page conflicts of application
data in the data management method of FIG. 1.

FIG. 10 is a diagram of application data according to
another embodiment of the inventive concept.

FIG. 11 is a diagram illustrating a page mapping table for
the application data shown in FIG. 10.

FIG. 12 is a diagram illustrating mapping relationships
shown in the page mapping table of FIG. 11.

FIGS. 13 and 14 are diagrams illustrating examples of a
page remapping method due to a page conflict in the mapping
relationships shown in the page mapping table of FIG. 11.

FIG. 15 is a diagram illustrating a page mapping table
according to another embodiment of the inventive concept.

FIG. 16 is a diagram illustrating a mapping method accord-
ing to another embodiment of the inventive concept.

DETAILED DESCRIPTION

Selected embodiments of the inventive concept are
described below with reference to the accompanying draw-
ings. These embodiments are presented as teaching examples
and should not be construed to limit the scope of the inventive
concept.

As used herein, the term “and/or” indicates any and all
combinations of one or more of the associated listed items.

US 9,152,560 B2

3

Expressions such as “at least one of,” when preceding a list of
elements, modify the entire list of elements and do not modify
the individual elements of the list.

FIG. 1 is a flowchart illustrating a data management
method according to an embodiment of the inventive concept.
FIGS. 2A and 2B are diagrams illustrating different ways of
storing application data in a system using the data manage-
ment method of FIG. 1. FIGS. 3A through 3D are diagrams
illustrating examples of different systems that can be used to
perform the method of FIG. 1. In the description that follows,
example method steps are indicated by parentheses (XXX).

Referring to FIG. 1, a system SYS generates or receives
application data ADTA comprising at least a root object R and
sub objects A and B (10). For example, the application data
may be generated by an application running on a processor
CPU within system SYS. Next, application data ADTA is
transmitted to a nonvolatile memory NVRAM within system
SYS, and root object R and sub objects A and B are stored in
the nonvolatile memory NVRAM (100). Root object R com-
prises pointers PA and PB that refer to respective sub objects
A and B stored in nonvolatile memory NVRAM.

Referring to FIGS. 2A and 2B, application data ADTA may
be stored using different types of data structures according to
the location where it is stored in system SYS. For example, as
illustrated in FIG. 2A, application data ADTA may be stored
in a tree structure using pointers PA and PB when it is stored
in nonvolatile memory NVRAM. Alternatively, as illustrated
in FIG. 2B, application data ADTA may be stored using a
linear structure when stored in an external storage device,
such as an HDD. Due to these different types of data struc-
tures, data conversion may be required when transferring
application data ADTA between nonvolatile memory
NVRAM and an external storage device. Such data conver-
sion may require, for example, serializing and/or marshalling
the data.

Referring to FIGS. 3A through 3D system SYS may be
implemented in alternative configurations where nonvolatile
memory NVRAM functions as a main memory, an external
storage device, or both. For example, nonvolatile memory
NVRAM may be used as an external storage device for long-
term storage of application data ADTA, or as a main memory
providing an interface for transmitting application data
ADTA between a processor CPU and the external storage
device. In addition, system SYS may be implemented with
additional forms of memory, such as a DRAM, an HDD, or
both.

In the example of FIG. 3A, system SYS comprises non-
volatile memory NVRAM, processor CPU, a user interface
Ul, and a power supply PS that are connected to a bus BUS.
Nonvolatile memory NVRAM functions as a main memory
and an external storage device of system SYS. During typical
operation, processor CPU loads application data ADTA in
nonvolatile memory NVRAM to execute an application, or it
may store application data ADTA on a long-term basis in
nonvolatile memory NVRAM.

In general, system SY'S may include one or more buses. For
example, bus BUS may be interpreted to include different
buses, such as a first bus connecting a main memory to pro-
cessor CPU, a second bus connecting an external storage
device to processor CPU, and so on.

Processor CPU controls execution of an application that
uses application data ADTA. The application data may be
generated internally by system SYS, or it may be received via
user interface Ul. Power supply PS supplies electric power
required to operate system SYS. Processor CPU, user inter-

10

15

20

25

30

35

40

45

50

55

60

65

4

face Ul, and power supply PS perform substantially the same
functions in each of the examples shown in FIGS. 3 A through
3D.

In the example of FIG. 3B, system SYS comprises non-
volatile memory NVRAM, processor CPU, user interface Ul,
power supply PS, and a main memory DRAM, all connected
to bus BUS. Nonvolatile memory NVRAM functions as an
external storage device for providing long-term data storage
in system SYS, and main memory DRAM is used as a main
memory for providing temporary data storage. Accordingly,
nonvolatile memory NVRAM stores application data ADTA
on a long-term basis. Application data ADTA can be directly
loaded into nonvolatile memory NVR AM to execute an appli-
cation in system SYS of FIG. 3B, and nonvolatile memory
NVRAM may perform parallel operations with main memory
DRAM.

In the example of FIG. 3C, system SYS comprises non-
volatile memory NVRAM, processor CPU, user interface Ul,
power supply PS, and an external storage device HDD, all
connected to bus BUS. Nonvolatile memory NVRAM func-
tions as a main memory of system SYS.

Processor CPU controls transmission/receipt of applica-
tion data ADTA to/from external storage device HDD via
nonvolatile memory NVRAM. For example, processor CPU
may load application data ADTA in a tree structure in non-
volatile memory NVRAM, and may perform serialization or
marshalling of application data ADTA with a file type corre-
sponding to a stream structure to store application data ADTA
in external storage device HDD. Otherwise, processor CPU
may load application data ADTA with the file type stored in
external storage device HDD of FIG. 3C into nonvolatile
memory NVRAM, and then perform deserializing or unmar-
shalling to convert the file into application data ADTA having
the tree structure to execute the application. In addition, in
system SYS of FIG. 3C, nonvolatile memory NVRAM may
store application data ADTA in external storage device HDD.
For example, processor CPU may recognize nonvolatile
memory NVRAM as a second external storage device, and
then, may store application data ADTA in the external storage
device HDD or nonvolatile memory NVRAM.

In the example of FIG. 3D, system SYS comprises non-
volatile memory NVRAM, processor CPU, user interface Ul,
power supply PS, main memory DRAM, and external storage
device HDD connected to bus BUS. Nonvolatile memory
NVRAM of FIG. 3D may exclusively perform functions of
the main memory or the external storage device, or it may
perform functions with another main memory or another
external storage device in parallel, as shown in FIG. 3B or 3C.

System SYS shown in FIGS. 3A through 3D can take
various alternative forms, such as a computer system, a
mobile system, an electronic system, a server system, or a
memory system, for example. Where system SYS is a mobile
device, a battery for supplying an operating voltage and a
modem such as a baseband chipset may be additionally pro-
vided. In addition, system SYS may further comprise other
features not shown in the drawings, such as an application
chipset, a camera image processor (CIS), and a mobile
DRAM.

In the embodiments of FIGS. 1 through 3D, application
data ADTA is typically transmitted from an application
executed by system SYS, and application data ADTA is orga-
nized with a tree structure including root object R and sub
objects A and B.

In the data management method of FIG. 1, application data
ADTA may be stored in nonvolatile memory NVRAM with
the tree structure and then provided to processor CPU for
execution without converting it into a file having a stream

US 9,152,560 B2

5

structure through a marshalling operation. Similarly, applica-
tion data ADTA may be stored back into nonvolatile memory
NVRAM without requiring an unmarshalling operation.
These capabilities eliminate overhead produced by the mar-
shalling and the unmarshalling operations, which can poten-
tially improve the input/output (I/O) performance of system
SYS as well as spatial efficiency of nonvolatile memory
NVRAM.

FIG. 4 is a diagram illustrating a method of assigning a
page of objects in application data ADTA within the data
management method of FIG. 1.

Referring to FIGS. 1 through 4, in the data management
method, first application data ADTA1 having a first name
NM1 is used by a first process PROC1 and second application
data ADTA2 having a second name NM2 is used by a second
process PROC2. Otherwise, first application data ADTA1 and
second application data ADTA2 may be used by the same
process, namely, first or second process PROC1 or PROC2.

The name assigned to each of first and second application
data ADTA1 and ADTA2 is stored in a certain region of
nonvolatile memory NVRAM, such as a region storing meta-
data. Where the corresponding application data is to be
accessed, processor CPU (or an operating system (not shown)
operated by processor CPU) searches for the names of first
and second application data ADTA1 and ADTA2 stored in
nonvolatile memory NVRAM to check whether the corre-
sponding application data is stored in nonvolatile memory
NVRAM.

Where there is a request to access each of first and second
application data ADTA1 and ADTA2, an object descriptor
ODP1 or ODP2 of each application data ADTA1 or ADTA2
may be accessed first. Object descriptors ODP1 and ODP2
may include respective pointers VR1 and VR2 for accessing
root objects R1 and R2, or they may include respective root
objects R1 and R2 for application data ADTA1 or ADTA2. In
addition, object descriptors ODP1 and ODP2 may include
mapping information pte_inf1 or pte_inf2 representing map-
ping relationships between a virtual address and a physical
address of a sub object A1 or A2 referred to by root object R1
or R2. Root object R1 of first application data ADTA1 further
comprises a pointer VA1 referencing sub object A1, and root
object R2 of second application data ADTA2 may include a
pointer VA2 referencing sub object A2.

In the embodiment of FIG. 4, pointers VR1 and VR2 ofroot
objects R1 and R2 and pointers VA1 and VA2 of sub objects
A1l and A2 referenced by the root objects R1 and R2 represent
virtual addresses, which may be different from pointers PA1
and PA2 shown in FIG. 2A that are represented as physical
addresses. The physical address of nonvolatile memory
NVRAM is accessed as the virtual address, and accordingly
the mapping information pte_infl or pte_inf2 representing
the mapping relationship between the virtual address and the
physical address of the object is necessary. As indicated
above, mapping information pte_infl or pte_inf2 regarding
the objects in opened application data ADTA1 or ADTA2 is
included in object descriptors ODP1 and ODP2.

Object descriptors ODP1 and ODP2 and mapping infor-
mation pte_infl and pte_inf2 in object descriptors ODP1 and
ODP2 are described in further detail below. When referring to
the object descriptor and related mapping information shown
in FIG. 4, the object descriptor and the mapping information
may be briefly represented by reference characters ODP and
pte_inf.

Sub-objects Al and A2 are assigned to different pages from
each other. In the example shown in FIG. 4, sub object Al of
first application data ADTA1 is assigned to a first page
(PAGE=1), and sub object A2 of second application data

20

40

45

55

6

ADTA2 is assigned to a second page (PAGE=2). Here, a page
(PAGE) may be a unit for mapping the virtual address of each
object to the physical address in the nonvolatile memory. For
example, the page may have a size of 4 KB.

In the data management method of FIG. 4, sharing of a
page between different objects is prohibited. Because the
mapping is performed in the page unit, if a plurality of objects
are assigned to one page and access to one of the objects
assigned to the same page is granted, the access to the other
objects assigned to the same page may be granted regardless
of whether the access is prohibited. In the example of FIG. 4,
if sub object Al of first application data ADTA1 and sub
object A2 of second application data ADTA?2 are assigned to
the same page (for example, PAGE=1), even where the access
to sub object Al of first application data ADTA1 is not
granted, because the mapping is performed in the page unit,
second process PROC2 may access the corresponding page
(for example, PAGE=1) where the access to sub object A2 of
second application data ADTA2 is granted. Therefore, sub
object Al of first application data ADTA1 may be accessed.
However, the sharing of a page between different objects is
prohibited, and therefore access to the object by a process
having a different access right may be prevented. Here, the
access right may be the right of reading the corresponding
object, reading and writing the corresponding object, or
executing the corresponding object, for example.

FIG. 5 is a diagram illustrating an example of a page
mapping table PTAB, which represents mapping relation-
ships between virtual addresses and physical addresses of the
application data, according to the embodiment of the inven-
tive concept. FIG. 6 is a diagram illustrating mapping rela-
tionships according to the page mapping table PTAB shown
in FIG. 5. The concepts described in relationship to FIGS. 5
and 6 can be used in the data management method of FIG. 4
to map virtual and physical addresses of objects.

Referring to FIGS. 5 and 6, page mapping table PTAB
comprises page mapping entries (pte) respectively corre-
sponding to the pages. In addition, each of first, second, and
third page mapping entries pet0, petl, and pte2 comprises the
virtual address and the physical address of the object assigned
to the corresponding page (PAGE), and access rights to the
corresponding object. For example, first page mapping entry
pte0 comprises a virtual address VA_R of object R assigned to
the first page (PAGE=0), and a physical address PA_R
mapped with virtual address VA_R. In addition, the first page
mapping entry pte0 comprises access right PERM to object R
assigned to the first page (PAGE=0).

Similarly, second page mapping entry ptel comprises a
virtual address VA_A and a physical address PA_A of an
object A assigned to a second page (PAGE=1), and access
right PERM. In addition, third page mapping entry pte2 com-
prises a virtual address VA_B and a physical address PA_B of
an object B assigned to a third page (PAGE=2), and access
right PERM.

The conversion of the virtual address into the physical
address according to the above object mapping and the access
to the object may be controlled by a memory management
unit (MMU) (not shown). For example, the MMU may con-
vert the virtual address into the physical address with respect
to each of the objects, and it may control the access grant to
each of the objects with reference to the page mapping
entries. The MMU may be supported by processor CPU of
system SYS shown in FIG. 3, which manages the data that
may be permanently stored in the nonvolatile memory
according to the data management method.

A region or a size of the memory that may be used by the
process is generally limited, so another application data may

US 9,152,560 B2

7

be mapped on a page that is mapped earlier. As illustrated in
FIG. 4, where application data ADTA is opened (requested),
a determination is made as to whether the page is used with
respect to each of the objects while scanning each of the
objects with reference to the object descriptor ODP of appli-
cation data ADTA. For example, where application data
ADTA that is mapped (e.g., as in FIGS. 5 and 6) is opened, it
may be determined whether the page (PAGE=1) to which sub
object A is assigned and the page (PAGE=2) to which sub
object B is assigned are used with respect to other objects A’
and B', as shown in FIG. 7.

FIGS. 8 and 9 are diagrams illustrating an example of a
remapping method for handling page conflicts of application
data in the data management method of FIG. 1.

Referring to FIGS. 8 and 9, where the pages (PAGE=1 and
PAGE=2) to which sub objects A and B of FIGS. 5 and 6 are
used by other objects A' and B' of different application data
(e.g., as in FIG. 7), the virtual addresses of sub objects A and
B may be changed. In the example of FIGS. 8 and 9, because
the pages (PAGE=1 and PAGE=2) to which sub objects A and
B of FIGS. 5 and 6 are assigned are changed to new pages
(PAGE=3 and PAGE=4), virtual addresses VA_A and VA_B
of sub objects A and B are changed. Accordingly, new map-
ping relationships with respect to sub objects A and B are
generated. That is, virtual objects VA_A and VA_B that are
mapped with physical addresses PA_A and PA_B of sub
objects A and B are changed. The remapping relationship
between the virtual addresses and the physical addresses may
be updated in object descriptor ODP of FIG. 4.

FIG. 10 is a diagram illustrating another example of appli-
cation data ADTA according to the embodiment of the inven-
tive concept.

Referring to FIG. 10, application data ADTA further com-
prises child objects C and D that are referenced by sub objects
A and B, with root object R and sub objects A and B. In the
example shown in FIG. 10, sub object A comprises child
objects C and D. Although child objects C and D are child
objects of sub objects A and B, child objects C and D may be
referenced by root object R via sub objects A and B, so child
objects C and D may be considered as sub objects A and B
with respect to root object R.

FIG. 11 shows a page mapping table PTAB of objects R, A,
B, C, and D in application data ADTA of FIG. 10. The virtual
addresses of objects R, A, B, C, and D of application data
ADTA having the mapping relationship shown in page map-
ping table PTAB of FIG. 11 may be assigned to pages
(PAGE=0 through 4), as shown in FIG. 12.

In application data ADTA of FIG. 10, where the pages of
the virtual address according to the mapping relationship
stored in the object descriptor ODP are used when application
data ADTA is opened, like in FIG. 7, that is, if the pages
(PAGE=1 and PAGE=2) to which the object objects A and B
of FIGS. 5 and 6 are assigned are used by objects A' and B' of
another application data, the pages (PAGE=1 and PAGE=2)
to which sub objects A and B are assigned may be changed to
new pages (PAGE=3 and PAGE=4), as shown in FIGS. 8 and
9

However, the pages (PAGE=3 and PAGE=4) to which sub
objects A and B are newly assigned due to the above conflict
are the pages to which child objects C and D of application
data ADTA of FIG. 10 have been assigned. Therefore, the
virtual addresses of the pages (PAGE=3 and PAGE=4) to
which child objects C and D have been assigned may be
changed to pages PAGE=5 and PAGE=6, as shownin FIG. 13.
In addition, the new mapping relationships of sub objects A
and B and child objects C and D may be updated in object
descriptor ODP of application data ADTA.

10

15

20

25

30

35

40

45

50

55

60

65

8

To prevent successive remapping of the child objects
according to the remapping of the sub objects, the mapping
information stored in the object descriptor is searched when
opening the application data so that the virtual addresses of
the pages, to which the sub objects will be newly assigned,
may be other pages except for the pages included in the
mapping information. In the example of FIG. 14, sub objects
A and B of FIG. 10 may be newly assigned to pages PAGE=5
and PAGE=6, to which any of the other objects R, C, and D of
FIG. 10 are not assigned.

FIG. 15 is a diagram illustrating an example of a page
mapping table according to another embodiment of the inven-
tive concept.

Referring to FIG. 15, page mapping entries pte(through
pted in page mapping table PTAB of FIG. 15 additionally
comprise information about objects referencing objects
assigned to corresponding pages. For example, in the embodi-
ment of FIG. 15, page mapping entry ptel comprises a virtual
address VA_A and a physical address PA_A of an object A
assigned to the corresponding page and access right PERM to
the corresponding page, and further comprises information
(or virtual address) VA_R of a root object R that references
the object A. In addition, page mapping entry pte2 comprises
a virtual address VA_B and a physical address PA_B of an
object B assigned to the corresponding page and access right
PERM to the corresponding page, and further comprises
information (or virtual address) VA_R of root object R that
references object B.

Where page mapping table PTAB of FIG. 15 is page map-
ping table PTAB of application data ADTA shown in FIG. 10,
it may comprise page mapping entries pte3 and pted corre-
sponding to pages to which child objects C and D are
assigned. In this case, page mapping entries pte3 and pted
may respectively comprise information about sub object A
that is referenced.

As illustrated in FIG. 15, where each of the page mapping
entries further comprises information about a parent object of
the corresponding object, where the objects of the application
data are opened, not all of the objects may be opened, but the
objects for which access is requested may be only opened. For
example, access is requested for object C of application data
ADTA shown in FIG. 10, root object R, sub object A, and the
child object C may only be opened with reference to infor-
mation about the referenced objects shown in the page map-
ping entries shown in FIG. 15. This can reduce the opening
time of the object.

FIG. 16 is a diagram illustrating a mapping method accord-
ing to another embodiment of the inventive concept.

Referring to FIG. 16, a fixed physical address is mapped to
some virtual addresses with respect to each of the objects. For
example, first objects A and second objects B shown in FIG.
16 are respectively mapped to their own physical addresses
(slanted portion of PAS). This can be used to avoid a problem
such as the conflict shown in FIG. 7.

The foregoing is illustrative of embodiments and is not to
be construed as limiting thereof. Although a few embodi-
ments have been described, those skilled in the art will readily
appreciate that many modifications are possible in the
embodiments without materially departing from the novel
teachings and advantages of the inventive concept. Accord-
ingly, all such modifications are intended to be included
within the scope of the inventive concept as defined in the
claims.

What is claimed is:
1. A method of managing data in a system comprising a
nonvolatile memory, comprising:

US 9,152,560 B2

9

storing a root object of application data, and at least one sub
object referenced by the root object in the nonvolatile
memory;

mapping virtual addresses of the root object and the at least

one sub object to physical addresses of the nonvolatile
memory respectively, in a page unit,

wherein the root object stored in the nonvolatile memory

comprises a pointer that references the at least one sub
object stored in the nonvolatile memory;

determining whether a page to which the at least one sub

object is assigned is used; and

upon determining that the page to which the at least one sub

object is assigned is used, remapping the virtual address
of the at least one sub object to a physical address by
changing a virtual address of the page to which the at
least one sub object is assigned.

2. The method of claim 1, wherein the application data
comprises first application data executed by a first process
and second application data executed by a second process,
and the mapping comprises assigning the root object and the
at least one sub object of the first application data and the root
object and the at least one sub object of the second application
data to different pages from each other.

3. The method of claim 1, wherein the application data
further comprises at least one child object that is referenced
by the at least one sub object, and the remapping of the virtual
address comprises changing the virtual address of the at least
one sub object to a virtual address without changing a virtual
address of the at least one child object.

4. The method of claim 3, when the application data further
comprises the at least one child object that is referenced by the
at least one sub object, the remapping of the virtual address
comprises changing a virtual address of the at least one child
object to another virtual address where the changed virtual
address of the at least one sub object is the same as the virtual
address of the at least one child object.

5. The method of claim 1, wherein the mapping is per-
formed with reference to page mapping entries indicating
mapping relationships between virtual addresses and physi-
cal addresses of the root object and the at least one sub object
respectively, with respect to each of the pages.

6. The method of claim 5, wherein each of the page map-
ping entries comprises a virtual address, a physical address of
a corresponding object, and access right to the corresponding
object.

7. The method of claim 5, wherein the page mapping entry
comprises a virtual address and a physical address of the
corresponding object, access right to the corresponding
address, and information about an object that references the
corresponding object.

8. The method of claim 7, wherein the root object com-
prises two or more sub objects and at least one of the two or
more sub objects is only allowed to be opened while the root
object is opened.

9. The method of claim 1, wherein the virtual addresses of
the root object and the at least one sub object are respectively
mapped to their own physical addresses.

10

20

30

40

45

10

10. The method of claim 1, wherein the nonvolatile
memory is accessible in byte units.

11. A method of managing data in a system comprising a
nonvolatile memory, comprising:

receiving application data comprising a root object, and at

least one sub object that is referenced by the root object;
storing the root object and the at least one sub object ofthe
application data in the nonvolatile memory,

wherein the root object stored in the nonvolatile memory

includes a pointer for referencing the at least one sub
object stored in the nonvolatile memory;

mapping virtual addresses of the root object and the at least

one sub object to physical addresses of the nonvolatile
memory respectively, in a page unit;

determining whether a page to which the at least one sub

object is assigned is used; and

upon determining that the page to which the at least one sub

object is assigned is used, remapping the virtual address
of the at least one sub object to a physical address by
changing a virtual address of the page to which the at
least one sub object is assigned.

12. The method of claim 11, wherein the nonvolatile
memory is a main memory or an external storage device of the
system.

13. The method of claim 11, wherein the system further
comprises a main memory or an external storage device.

14. The method of claim 11, wherein the application data
comprises first application data executed by a first process
and second application data executed by a second process,
and the mapping comprises assigning the root object and the
at least one sub object of the first application data and the root
objectand the at least one sub object of the second application
data to different pages from each other.

15. A system, comprising:

a processor configured to execute an application using

application data; and

a nonvolatile memory configured to store a root object of

application data, and at least one sub object referenced
by the root object, wherein the root object stored in the
nonvolatile memory comprises a pointer that references
the at least one sub object stored in the nonvolatile
memory,

wherein the processor is configured to

map virtual addresses of the root object and the at least
one sub object to physical addresses of the nonvolatile
memory respectively, in a page unit,

determine whether a page to which the at least one sub
object is assigned is used, and

upon determining that the page to which the at least one
sub object is assigned is used, remap the virtual
address of the at least one sub object to a physical
address by changing a virtual address of the page to
which the at least one sub object is assigned.

16. The system of claim 15, wherein the nonvolatile
memory functions as a main memory of the system.

17. The system of claim 16, further comprising an external
storage device configured to store the application data.

#* #* #* #* #*

